

Client:Shire of Cunderdin

Address: Cunderdin Swimming Pool

Date: 20.03.2025 BYDA#:38700743

Plan Overview

Project#:WM25-074 Service Locator: Shane Hart

Power QL-B Comms QL-B Water QL-B Gas QL-B Gas QL-b Stormwater QL-B Sewer QL-B Unknown/retic QL-B MRWA traffic signals QL-B Power QL-C/D Comms QL-C/D Water QL-C/D Gas QL-C/D Stormwater QL-C/D Sewer QL-C/D Unknown/Retic QL-C/I MRWA TS QL-C/D

Symbols
O Electrical Pole
Electrical Dome
O MRWA traffic signal
Telstra Pit/Manhole MRWA traffic signal Telstra Pit/Manh
Optus Pit
Vocus Pit
Sewer Pit
Stormwater Pit
Electrical Pit

Electrical Transforme Fire Hydrant Water Valve Water Meter Water Feed Gas Feed Gas Valve QL-A/Pothole n QL-B depth

Abbreviations
PVC - Polyvinyl Chloride
PE - Polyethylene
AC - Asbestos Cement
RC - Reinforced Concrete
C - Concrete
CU - Copper
CI - Cast Iron
DI - Ductile Iron
ST - Steel

VC - Vitrified Clay AB - Abandoned OF - Optic Fibre IL - Invert Level OL - Obvert Level EOT - End of Trace UTT - Unable to Trace DB - Direct buried

- Existing swimming pool pipework unaccounted for.
- Existing reticulation not located as requested.

Plan# 1 Of 2

Power QL-B Comms QL-B Water QL-B Gas QL-B Stormwater QL-B Sewer QL-B Unknown/retic QL-B MRWA traffic signals QL-B Symbols
 Electrical Pole
 Electrical Dome
 MRWA traffic sign
 Telstra Pit/Manhol
 Optus Pit
 Vocus Pit
 Sweer Pit
 SW Stormwater Pit
 Electrical Pit

Electrical Transformer
Fire Hydrant
Water Valve
Water Meter
Water Feed
Gas Feed
Gas Valve
QL-A/Pothole
2m QL-B depth

Abbreviations
PVC - Polyvinyl Chloride
PE - Polyethylene
AC - Asbestos Cement
RC - Reinforced Concrete
C - Concrete
CU - Copper
CI - Cast Iron
DI - Ductile Iron
ST - Steel

VC - Vitrified Clay
AB - Abandoned
OF - Optic Fibre
e IL - Invert Level
OL - Obvert Level
EOT - End of Trace
UTT - Unable to Trace

- Existing swimming pool pipework unaccounted for.
- Existing reticulation not located as requested.

Plan# 2 Of 2

Power QL-B Comms QL-B Water QL-B Gas QL-B Stormwater QL-B Sewer QL-B Unknown/retic QL-B MRWA traffic signals QL-B Power QL-C/D
Comms QL-C/D
Water QL-C/D
Gas QL-C/D
Stormwater QL-C/D
Sewer QL-C/D
Unknown/Retic QL-C/M
MRWA TS QL-C/D

Electrical Pole Electrical Dome MRWA traffic signal Telstra Pit/Manhole MRWA traffic signal Telstra Pit/Manh
Optus Pit
Vocus Pit
Sewer Pit
Stormwater Pit
Electrical Pit

H Fire Hydrant
X Water Valve
M Water Meter
WF Water Feed
Gas Feed
X Gas Valve
4) QL-A/Pothole
1.2m QL-B depth

Utility surveying is a professional service defined in Australia by the Australian Standard, Classification of subsurface utility information AS5488.1:2019.

WA Mapping provides all utility investigations in accordance with the Australian Standard. This standard identifies four quality levels and specifies the following tolerances:

- QL-A +/- 50mm

- QL-B +/- 300mm horizontal and +/- 500mm vertical

- QL-C - Tolerance does not apply

- QL-D - Tolerance does not apply

Quality Level A

(Meets location accuracy standards for minimum risk when excavating)

Quality Level A is the highest quality level detailed within AS5488. It is the only quality level that defines a subsurface utility to be 'validated'. This level involves the exposure of underground utilities through non-destructive methods (Vacuum potholing). The utility depth, type, size and material will all be confirmed.

Quality Level B

(Significant risk reduction)

Quality Level B provides the horizontal position of underground utilities through surface geophysical methods. Traditionally, electromagnetic detection (EMI) is used for conductive utilities and ground penetrating radar (GPR) is primarily used for nonconductive utilities. Both methods have limitations and can be affected by the following, but not limited to:

- Depth of the utility.
- Proximity of utilities.
- Soil/geological conditions.
- Material conductivity and other geological anomalies that may distort EMI and GPR frequencies.
- Terrain onsite i.e., surface condition, vegetation cover, reinforced concrete, surface water etc.

The effectiveness of GPR is highly dependent on ground conditions, WA Mapping cannot guarantee GPR will be effective on all sites/projects however this will be communicated to advise of an alternative solution if GPR is unsuccessful.

Quality Level C

(Low accuracy and a high risk of damage)

Quality Level C is best described as a surface feature correlation or an interpretation of the approximate location and attributes of a subsurface utility asset using a combination of existing records and site survey of visible evidence for example you can see the pit lids shown on the plan but the actual position of underground connection between pits is still assumed.

Quality Level D

(The least accurate level and if used on its own has a high risk of damage)

Quality Level D information is generally obtained from existing records provided by utilities as a result of a Before you dig enquiry being lodged, In many cases the asset depicted on the plan is in a schematic format and intended only to indicate its presence.

For any more information please contact Shane on 0422 344 981 or shane.hart@wamapping.net.au.